
Geometry and Material Modeling: 
The drone is built in 1D, 2D, and 3D spaces and used 

linear mesh, triangle mesh, and tetrahedron mesh respectively. 
The position of the mesh is updated using the finite element 
method, and the positions and directions of the rotors are updated 
through finding the normal vectors of the pieces of mesh where the 
rotors are located at. The information is then passed to the linear 
quadratic regulator in order to find the optimal thrusts to balance 
the drone. The thrust is then applied to the drone so that the drone is 
stabilized.

The next step of the project is to further 
optimize the control of drones by implementing 
Reinforcement Learning techniques. Meanwhile, the 
3D printed soft-body drone will be used to test the 
control beyond just the computer simulation. 

This project explores the 
power of computation in the area 
of customized drone design, 
specifically drones built with soft 
materials. The goal is to create an 
effective computational way to 
accurately simulate and control 
soft-body drones. In this project, 
tetrahedron mesh and the finite 
element method are used to model 
and simulate 3D drones. The 
linear quadratic regulator is used 
to control the drone so that this 
dynamic system is operated at a 
minimum cost. 

Physics Simulation:
We developed several methods to build the simulation, such as the mass-spring model 

and the finite element method (FEM), and found the later performs better in 3D. FEM has 
become a popular approach to solving problems in continuum mechanics. The finite element 
method breaks down continuous volumetric bodies into finite elements—in this case, tetrahedrons. 
Calculations are then applied each tetrahedron and used to approximate what is taking place for all 
points inside each tetrahedron. The finite element method is used to calculate the elastic force on 
each particle caused by deformation; it makes use of a neo hookean model of hyperelasticity 
and has Lamé coefficients that fall within the range of those of a standard silicon rubber.

Feedback Control:
We first implemented the proportional–integral–derivative controller (PID) and later 

developed a better method, the linear quadratic regulator (LQR), which is likely the most 
important result in optimal control theory to date. It returns the optimal thrusts based on the 
current state. Given a linear system

ẋ = A(x-x*) + B(u-u*)
where x is the state vector, containing information of current position and Euler angles, as well as 
their derivatives, u is the control vector, representing the thrusts for individual propellers, and A and 
B are matrices related to the current geometry of the drone and position and direction of the rotors.

The infinite-horizon cost function is given by
J = ∫0

∞
  
 [xTQx+uTRu] dt, Q = QT ≥ 0, R = RT > 0

To find the optimal cost-to-go function J*(x), we use Hamilton–Jacobi–Bellman equation and write 
it in the form xTSx. Due to the convexity of its HJB form, the minimum can be found by setting the 
gradient to 0. This yields the optimal policy u*=−R-1BTSx. Inserting this equation back to the HJB 
form, we find S, thus the optimal thrusts  u.1.2.

Previous research in the 
field is mainly focused on 
designing drones that are built 
with hard materials. However, this 
project aims to devise new 
computer programs to design 
drones with morphable shapes, 
foldable structures, and 
assemblable functionalities. The 
main difficulty of controlling soft 
drones is the uncertainty and 
instability of the movement of 
the drone. To overcome this 
problem, we used the following 
methods.
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*These simulations are run with the PID controller and the mass-spring 
model 
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